The effects of acid on bone
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Metabolic acidosis induces calcium efflux from bone and in the
process buffers the additional hydrogen ions. Initially metabolic
acidosis stimulates physicochemical mineral dissolution and
then cell-mediated bone resorption. Acidosis increases activity
of the bone resorbing cells, the osteoclasts, and decreases
activity of the bone forming cells, the osteoblasts. Ostecoblastic
immediate early response genes are inhibited as are genes
controlling matrix formation. Cur Opin Nephro! Hypertens 8:369-379,
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Introduction

The maintenance of a stable physiologic systemic pH is
of critical importance to the survival of mammals [1].
However, there are relatively common clinical disorders,
including chronic diarrthea, renal failure and renal tubular
acidosis, in which a gain of acid or loss of base results in
decreased systemic pH (acidosis) [1-3]. While only net
loss of hydrogen ions can ultimately correct acidosis [1],
bone appears to be instrumental in the maintenance of a
stable physiologic systemic pH during metabolic acido-
sis. However, this homeostatic function is often at the
expense of bone mineral content [1-28, 29°*,30,31*°, 32—
34].

In-vivo observations

During in-vivo acute metabolic acidosis (a primary
decrease in bicarbonate ion concentration), approxi-
mately sixty percent of the administered protons are
buffered outside of the extracellular fluid [35] by soft
tissues [36-38] and by bone [2-4,7-9,16,26,39-41]. The
in-vivo evidence that bone acutely buffers hydrogen
ions, and in the process releases calcium ions, derives
principally from the loss of bone sodium and/or
potassium [6,15,23,24,42-44], carbonate [8,16,44,45],
and the increase in serum calcium [46] observed during
acidosis. Bone sodium (or potassium) loss implies
protons for sodium (or potassium) exchange and
carbonate loss suggests consumption of this buffer by
the administered protons. At least 98% of body calcium

. is contained within bone [47,48] therefore the increase in

serum calcium is likely to derive from mineral stores.
Chronic metabolic acidosis, found in patients with renal
insufficiency [1,3,49] and renal tubular acidosis [1,50],
increases urinary caleium excretion [51-53] without an
increase in intestinal calcium absorption [54,55]. This
results in a negative calcium balance [56,57] that appears
to reflect proton-mediated dissolution of bone mineral
[1,3,39,51,58,59], Indeed, in most in-vivo studies chronic
metabolic acidosis appears to decrease mineral content
156-58,60].

On a daily basis, metabolism of dictary protein generates
approximately 1 meq/kg of protons in adults [1,3]. The
coupling of this chronic acid ingestion, induced by the
common Nosth American high protein diet, with the
known effects of acid on bone has led to the suggestion
that it may play a role in the etiology of osteoporosis
[58,61-63]. Supporting this hypothesis is the observation
that administration of base appears to decrease the
negative calcium balance induced by a high protein diet
[64-66].
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In addition w its effects on existing bone, metabolic
acidosis also has the potential to affect de-novo bone
formacion. Normally, osteoblasts synthesize an extracel-
lular matrix consisting largely of type 1 collagen fibrils but
also including noncollagenous proteins such as osteopon-
tin, osteonectin, osteocalein, matrix Gla protein, and bone
sialoprotein [67]. As this matrix matures it sequesters
phosphate from the environment [68]. The independent
effect of acidosis to suppress bone formation was
elegantly demonstrated in children with renal tubular
acidosis [69-71]. In a radiographic study the majority of
patients with proximal renal tubular acidosis had rickets
or osteopenia [72]. There is ample clinical evidence that
acidosis adversely affects bone during renal failure [73-
76]. Bone carbonate is decreased in acidic uremic patients
[77-79]. This decrease may represent dissolution of bone
carbonate stores or replacement by phosphate resulting in
the incorporation of protons into the mineral [8,16,45].
Bone mineral loss may be corrected by bicarbonate ion
administration [80-82].

In-vitro observations

Although in-vivo evidence strongly suggests that bone is
involved in the systemic response to acid-base disorders,
until recently there was little direct in-vitro confirmation
[2]. Neuman ez #/. found that a reduction of medium pH
produced a marked increase in hydroxyapatite solubility
[83]. Dominguez and Raisz [84] determined that an acid
medium induced movement of **Ca from prelabelled
bone.

We undertook a sexies of studies to test the hypotheses
that cultured bone exposed to a physiologically acidic
medium would release calcium into the medium and
buffer the increased medium protons, We utilized the
model of cultured neonatal mouse calvariae (frontal and
parietal bones of the skull), which, like bones iz vivo,
have functioning osteoclasts and osteoblasts [85,86],
respond to hormones, and synthesize DNA and proteins
[87). We found that calvariae can be cultured in the
physiologic CO,-HCO;3™ buffer system [4]. Medium pH
can be regulated precisely by independently altering the
partial pressure of carbon dioxide or bicarbonate ion
concentration, simulating either respiratory or metabolic
acid-base disorders respectively [1,4].

Acute acid-induced calcium release

We found that cultured calvariae exhibit a proton-
dependent net calcium efflux during both acute (3 h)
and more chronic (>24-99 h) incubations [1-27]. Dur-
ing acute incubations there was a net calcium efflux from
the calvariae when medium pH was decreased to less
than the physiologic normal of 7.40 by decreasing the
bicarbonate ion concentration. There was no net flux at
pH=7.40 and an influx of calcium into bone when pH
was greater than 7.40 [4] (Fig. 1).

Figure 1, Effect of initial medium pH on net calcium flux in calvariae
cultured for three hours
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A positive flux indicates net calcium movement from the calvariae into the
medium. pH was adjusted for the 3 h incubation with concentrated HCI
or NaOH at a PCO, of 40 mmHg. Calvariae were preincubated in
control medium for 24 h prior to this 3 h incubation. r=0.890, n=4s,
P <0.001, Reproduced with permission from [5].

We next tested the hypothesis that the mechanism of
proton-mediated calcium efflux from bone during these
acute incubations was direct physicochemical (non-cell-
mediated) calcium release. We cultured calvariae with
agents that would stimulate or suppress bone cell activity
but not affect the mineral directly [5]. We found that the
contribution of bone cells to calcium efflux from the
mineral during these acute (3 h) experiments was
constant and pH-independent, thus acute proton-
mediated calcium release was due to physicochemical
and not cell-mediated mechanisms [5] (Fig. 2). To
confirm that protons could alter physicochemical forces
and promote dissolution of the bone mineral, synthetic
carbonated apatite disks were cultured in physiologically
acid medium [17]. The carbonated apatite disks are an
accurate cell-free model of bone mineral [88-94]. We
demonstrated calcium efflux from cultured carbonated
apatite disks similar to those from cultured calvariae in
response to a physiologic acidosis, supporting the
hypothesis that protons can induce physicochemical
calcium release from bone [17].

The type of bone mineral in equilibrium with the
medium, and thus altered by the physicochemical forces,
could be either carbonate or phosphate in association
with calcium, We tested the effect of altering the driving
forces for crystallization with respect to the solid phase of
the bone mineral by measuring the calcium efflux after
an alteration in phosphate or carbonate concentration at
either neutral or acid medium pH in calvarial cultures
[8]. With respect to calcium and carbonate, but not
caleium and phosphate, there was bone formation in a
supersaturated medium, no change in the bone mineral
when cultured in a saturated medium and bone
dissolution into an undersaturated medium. Thus bone
carbonate appears to be selectively solubilized during an



Figure 2. Comparison of regressions of initial medium pH on net
caleium flux for six separate groups of calvariae
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Figure 3. Effect of initial medium pH on net proton flux in calvariae
cultured for three hours
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Calvariae were incubated for 24 h in similar medium prior to the 3 h
reincubation. Acetazolamide, calvariae incubated in control medium with
acetazolamide 4 x 10~* M; azide, calvariae incubated in control medium
with azide 0,1% final concentration; control, calvariae incubated in
control medium (pH~ 7.40); freeze-thaw, calvariae incubated in control
medium after three successive freeze-thaw cycles; parathyroid, calvariae
incubated in control medium with parathyroid hormone at a concentra-
tion of 1x 1078 M; 1,25(0H),Ds, calvariae incubated in contro! medium
with 1,26 dihydroxyvitamin Dy at a concentration of 1x 1078 M.
Regressions are different due to a variation in intercepts of all groups
except parathyroid hormone and 1,25(0OH).Ds, which are similar, and
azide and freeze-thaw, which are similar. Slopes are similar in all six
groups. Reproduced with permission from [5].

acute reduction in pH leading to a release of calcium.
When we cultured calvariae in acidic medium there was
a progressive loss of total bone carbonate during a model
of metabolic acidosis [16]. Further support for the role of
carbonate in acid-mediated bone mineral dissolution
comes from studies in which we demonstrated that at a
constant pH, whether physiologically neutral or acidic,
bone calcium efflux is dependent on the medium
bicarbonate concentration. A lower bicarbonate concen-
tration leads to greater calcium efflux [14]. Bone
carbonate appears to be in the form of carbonated
apatite [91,95,96].

Hydrogen ion buffering

The in-vitro evidence for proton buffering by bone is
derived from studies of acidosis-induced proton flux into
bone [4,7-9] and microprobe evidence for a depletion of
bone sodium and potassium  during acidosis
[6,11,15,23,24]. We have shown that when calvariae are
cultured in medium acidified by a decrease in carbonate
concentration, there is a net influx of hydrogen ions into
the bone, decreasing the medium hydrogen ion con-
centration and indicating that the additional ions are
being buffered by bone [4,7-9] (Fig. 3). This influx of
protons into bone leads to an increase in the pH of the
culture medium,
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A positive flux indicates net proton movement from the calvariae into the
medium, a negative flux the opposite. pH was adjusted for the 3 h
incubations with concentrated HCl or NaOH at a partial pressure of
carbon dioxide of 40 mmHg. r=0.735, n=41, P<0.001. Reproduced
with permission from [4].

Proton for sodium/potassium exchange

Bone is a reservoir for sodium and potassium and its
surface has fixed negative sites that normally complex
with sodium, potassium and hydrogen ions. The sodium
and potassium appear to exchange freely with the
surrounding fluid [47,48]. Using a high resolution
scanning ion microprobe with secondary ion mass
spectroscopy we found that the surface of the bone is
rich in sodium and potassium relative to calcium
[6,11,15,97-99]. After incubation in acidic medium there
is loss of surface sodium and potassium relative to
calcium [6,11,15,23,24] in conjunction with proton
buffering, suggesting that sodium and potassium ex-
change with hydrogen ions on the bone surface resulting
in a decrease in medium acidity [6,42,43]. When
osteoclastic function is inhibited with calcitonin, micro-
probe analysis indicates that physicochemical proton
buffering by bone causes relatively equal calcium and
sodium loss [15]. In acidic medium, osteoclastic function
is necessary to support the enriched levels of bone
potassium [24].

Fall in bone carbonate

Bone contains approximately eighty percent of the
total carbon dioxide (including CO5*~, HCO3;™ and
COy) in the body {100]. Approximately two-thirds of
this is in the form of carbonate complexed with
hydrogen ions as bicarbonate ions (HCO;™) or with
calcium, potassium and sodium and other cations. It is
located in the lattice of the bone crystals where it is
relatively inaccessible to the systemic circulation. The
other third is located in the hydration shell of
hydroxyapatite where it is readily available to the
systemic circulation, Acute metabolic acidosis decreases
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bone total carbon dioxide [45]. We have shown cthat
acidosis induces the release of calcium and carbonate
trom bone [8] leading to a progressive loss of bone
carbonate during metabolic acidosis [16].

When both the in-vitro and in-vivo studies are con-
sidered together there is strong evidence that bone is a
proton buffer capable of maintaining the extracellular
fluid pH near the physiologic normal. The loss of both
bone sodium and carbonate suggests that in addition to
sodium for proton exchange, there is a progressive loss of
carbonate in response to acidosis.

Chronic acid-induced calcium release

Chronic metabolic acidosis induces the release of bone
calcium, predominantly by enhanced cell-mediated
bone resorption and decreased bone formation
[10,13,18,19,21,22,28,101]. However, there is a compo-
nent of direct physicochemical acid-induced dissol-
ution, as in acute metabolic acidosis [4,5,8,9,15,17]. In-
vivo rat studies have shown stimulaton of cell-
mediated bone calcium resorption during prolonged
acidosis [46,102].

We demonstrated increased cell-mediated bone calcium
resorption after 99 h of culture in acidic medium
produced by a decrease in bicarbonate ion concentration
[10] (Fig. 4). We have also shown that acidosis increases
osteoclastic and inhibits osteoblastic activity [13]. Re-
lease of the osteoclastic enzyme p-glucuronidase was
stimulated (Fig. 5) while osteoblastic collagen synthesis
(Fig. 6) and alkaline phosphatase were inhibited.
Conversely we found that an increase in bicarbonate
concentration, metabolic alkalosis, decreases calcium
eflux from bone through an increase in osteoblastic

Figure 4. Net calcium flux during the final 51 hours of a 99 hour
incubation for the six groups of calvariae studied
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Live, calvariae cultured in living state; dead, calvariae subjected to three
freeze-thaw cycles before culture; ofl, calvariae culture in unaltsred
medium; met, medium acidified by lowering the bicarbonate concentra-
tion; resp, medium acidified by increasing the partial pressure of carbon
dioxide. Values are mean+ SEM, Reproduced with permission from {10].

bone formation and a decrease in osteoclastic bone
resorption [22].

Further evidence that metabolic acidosis inhibits osteo-
blastic function was obtained utilizing primary osteo-
blasts in culture. Isolated osteoblasts cultured for three
weeks synthesize collagen and form nodules of apatitic
bone [103-106). We found that metabolic acidosis leads

Figure 5. Effect of acidosis and parathyroid hormone, alone and in
combination, on osteoclastic -glucuronidase activity
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Cil, calvariae incubated in control medium; met, medium acidified to a
pH of approximately 7.10; PTH, medium with parathyroid hormone
1079 met+PTH, PTH added to acidic medium. Calvariae were
incubated for 24 h and then fransferred to similar fresh medium for an
additional 24 h. At the end of the second 24 h incubation, aliquots of
medium were removed for assay of f-glucuronidase activity. Values are
mean +SEM. Reproduced from [21] with permission.

‘Figure 6. Effect of acidosis and parathyroid hormone, alone and in
combination, on osteoblastic collagen synthesis
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Calvariae were incubated in control medium {(ctl), medium acidified to a
pH of approximately 7.10 (met); medium with parathyroid hormone
107" M (PTH), or in parathyroid added to acidic medium {met+PTH)
Calvariae were incubated for 24 h and then transferred to similar fresh
medium for an additional 24 h. Incorporation of [*H] proline into
collagenase-digestible protein in caivariae was measured during the final
3h of the second 24 h incubation. Values are mean+SEM, Repro-
duced with permission from [21],




Figure 7. Cumulative calcium influx as a function of incubation time
for cultured neonatal mouse calvarial cells
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Cells were incubated in control medium until confluent (day 8) and then
cultured for an additional 14 days in control medium (ctl-calvariae) or
medium acidified by decreasing the medium bicarbonate concentration
(met—calvariae). Balb/C 3T38 mouse fibroblasts were also incubated in
control medium (cti-BALB/C 3T3), Values are mean+SE, Changes in
medium calcium concentration were calculated by subtracting the final
from the initial calcium concentration and correcting for volume. Resulis
are summed over the 14 day incubation period and represent caicium
influx by the cell cultures. Reproduced with permission from [18].

Figure 8. Effect of acidosis and parathyroid hormone, alone and in
combination, on net calcium efflux from cultured neonatal mouse
calvariae
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Calvariae were incubated in control medium (ctl), medium acidified to a
pH of approximately 7.10 (met), medium with a final parathyroid
hormone concentration of 10~ '% M (PTH), or with parathyroid hormone
added to acidic medium {met+PTH). Calvariae were incubated for 24 h
and then transferred to similar fresh medium for an additional 24 h. At
the end of the second 24 h incubation, aliquots of medium were
removed for assay of net calcium flux. Values are meandSEM.
Reproduced with permission from [21],

not only to fewer nodules but also decreases calcium
influx into the nodules [18] (Fig. 7). Thus, it appears that

both augmentation of osteoclastic bone resorption and-

inhibition of osteoblastic bone formation have a promi-
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nent role in the hypercalciuria of chronic metabolic
acidosis [13,18].

During renal failure there is often increased parathyroid
hormone in addition to acidosis [107%108]. To deter-
mine if acidesis and parathyroid hormone have additive
effects on calcium efflux, calvariae were cultured in
acidic medium with or without the hormone [21]. We
found that acidosis and parathyroid hormone indepen-
dently stimulated calcium efflux from bone, inhibited
osteoblastic collagen synthesis and stimulated osteoclas-
tic f-glucuronidase secretion. Their combination had a
greater effect on each of these parameters than either
alone (Fig. 8).

Acidosis induced alterations in gene
expression

Based on the proton-induced increase in osteoclastic
bone resorption and decrease in osteoblastic bone
formation [13,19], we hypothesized that acidosis affects
the pattern of gene expression in osteoblasts. As a model
system we used primary neonatal mouse calvarial cells,
which are principally osteoblasts and osteoblast precur-
sors [101]. To assay acute effects of acidosis on gene
expression, cells were cultured in a physiologically
neutral pH medium until confluent and then stimulated
with fresh medium at either neutral or acidic pH. RNA
was harvested at various times after stimulation. Among
a group of immediate early response genes, including
Egr-1, junB, c-jun, junD and c-fos, only the magnitude of
Egr-1 stimulation was dependent on medium pH. At
40 min, ¢gr-1 RNA levels were 10- to 30- fold higher
than basal levels after stimulation with neutral medium.
Acidic medium caused 30-50% less stimulation. A
progressive decrease in medium pH to 6.8 led to a
paralle]l decrease in Egr-/ stimulation and an increase in
pH to 7.6 led to an increase in Egr-/ stimulation [101]
(Fig. 9). Osteoblasts express type 1 collagen as the major
component of the bone extracellular matrix, which
subsequently becomes mineralized. Forty minutes after
medium change, type I collagen RNA was stimulated
approximately 3-5 fold. The stimulation was again
decreased by acidosis and increased by alkalosis [101].
Inhibition of protein synthesis by cycloheximide caused
a superinduction of gz~1 RNA while preserving the pH
dependency of the process. In contrast, cycloheximide
abolished the pH dependency of type 1 collagen RNA
expression [101].

Cultured primary mouse calvarial cells differentiate and
form sites of mineralization known as bone nodules
[18,103~106]. During this process, osteoblasts express a
number of matrix proteins distinct to bone, including
bone sialoprotein, osteocalcin, osteonectin, osteopontin,
and matrix gla protein [109]. We have shown that
metabolic acidosis decreases bone nodule number, size
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and calcium content [18]. We hypothesized that acidosis
would alter the pattern of matrix gene expression in
chronic cultures of bone cells resulting in a matrix that
mineralizes less extensively than matrix from cultures
incubated at neutral pH. After three to four weeks in
neutral pH medium there was a dramatic increase in
osteopontin RNA. In contrast there was no increase in
osteopontin RNA in acidic cultures (Fig. 10). Osteo-
pontin contains RGD (ARG-GLY-ASP) domains and
serves as an anchoring protein for macrophages and
osteoclasts. It may also be a chemoattractant for these
cell types [110,111]. Downregulation of osteopontin
expression may serve to limit recruitment of bone-
resorbing cells during acidosis, perhaps a cause of low
turnover renal osteodystrophy [3]. RNA for matrix Gla
protein is also induced by neutral differentiation
medium, reaching levels 20-30 fold greater than those
before differentiation. Again, acidosis almost totally
prevents the increase in matrix Gla protein RNA levels
(Fig. 11). While matrix Gla protein expression is not
limited to bone, it comprises about 10% of the
carboxyglutamic acid found in bone [112]. The Gla
residue coordinates with calcium and may serve to
direct calcification [112]. The levels of RNA for the
housekeeping gene glyceraldehyde-3-phosphate dehy-
drogenase have not been found to vary with pH, nor do
the levels of ewo other RNA species expressed in
osteoblasts, osteonectin and transforming growth factor
Bi, indicating that there is not overall cellular toxicity.
To determine if acidosis reversibly impairs cellular
production of osteopontin and matrix Gla protein,

Figure 9. Response of Egr-i RNA to stimulation with medium of
varying pH
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Cultured neonatal mouse calvarial cells were stimulated for 40 min with
medium at the indicated pH and then harvested for RNA preparation. As
a further control some cells were not stimulated (NS)., Medium pH was
altered by modification of the bicarbonate concentration at a constant
carbon dioxide partial pressure of 40 mm Hg. Autoradiographs of a
typical Northem filter as probed for Egr-1 (a) then reprobed for
glyceraldehyde-3-phosphate dehydrogenase (b). Twenty ug of total
RNA were electrophoresed in each Jane. Reproduced with permission
from [101]. ‘

cultures of primary calvarial bone cells were put in
acidic differentiation medium at day 8, then switched to
neutral medium at either day 15, 22, or 29 [28]. We
found that a one-week exposure to acidosis had no
lasting effect on osteopontin or matrix Gla protein
expression, while a two-week exposure had a small
inhibitory effect. There was partial recovery of RNA for
osteopontin and matrix Gla protein after three weeks of

Figure 10. Northern analysis of transforming growth factor B
osteopontin and osteonectin expression
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Cells were grown for 8 days in control medium (pH="75), prior to
incubation in neutral (N, pH=75) or acidic (A, pH=71) differentiation
medium, and were harvested for RNA at indicated times. Aliquots of
RNA (20 ug) were electrophoresed, transferred to a single nylon
membrane and then hybridized to transforming growth factor
(TGF)jy,0steopontin {OP), osteonectin (ON), and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). Images shown were acquired
with Phosphorlmager (Molecular Dynamics Inc., Sunnyvale, CA) f
capture. Reproduced with permission from [28].

Figure 11. Northern analysis of matrix Gla protein RNA expression
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Cells were grown for 8 days in control medium (pH=75) prior o
incubation in neutral {N, pH=75) or acidic (A, pH=71) differentiation
medium and were harvested for RNA at indicated times. Aliquots of RNA
(20 ug) were electrophoresed, transferred to a single nylon membrane
and then hybridized sequentially to matrix Gla protein and glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH). Images shown were
acquired with Phosphorlmager (Molecular Dynamics Inc., Sunnyvale,
CA) fi capture. Reproduced with permission from [28].
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acidosis. In the same samples, osteonectin and glycer-
aldehyde-3-phosphate dehydrogenase RNA expression
were not affected.

Acidosis-induced changes in bone ion
composition

We utilized a high resolution scanning ion microprobe
with secondary ion mass spectroscopy to determine how
hydrogen ion concentration alters the ion composition of
bone mineral [6,11,15,23,24,97-99,113,114]. Our studies
to date have shown that the calvarial surface is rich in
sodium  and  potassium  relative to  calcium
[6,11,15,23,24,29*,97-99,113]. The excess bone potas-
sium is maintained through cell-mediated processes [98).
Loss of bone cell function produces an influx of calcium
and marked release of bone potassium. There is a fall in
the ratio of potassium to calcium, and to a lesser extent
sodium to calcium, at the superficial surface of the
mineral [98]. Metabolic acidosis causes release of mineral
calcium and leads to a reduction in the surface ratio of
sodium to calcium and potassium to calcium, indicating a
greater relative release of mineral sodium and potassium
than calcium [6], However, the mineral and medium are
in equilibrium [8] and there is movement of ions
between the two [83] making it difficult to interpret
the apparent ion fluxes, especially with respect to
potassium and sodium. To help us better understand
the effects of acidosis on potassium relative to calcium
we labelled the mineral iz vivo with the stable isotope
K and studied the response to acidosis in vitro. We
found chat mineral was indeed rich in potassium relative
to calcium and that acidosis caused a fall in the
potassium to calcium ratio indicating loss of this stable
isotope from the bone mineral [24].

Since mineral in live bone is rich in potassium relative to
caleium it was unclear if the osteoclasts selectively
removed potassium or if they nonselectively remove the
surface of the bone mineral. We isolated neonatal mouse
bone cells and cultured them on bovine cortical bone
slices in the presence of parathyroid hormone [23]. We
then utilized the ion microprobe to compare the
unresorbed bone with that at the base of the osteoclastic
resorption  pits. We found that in the presence of
parathyroid hormone the osteoclasts nonselectively re-
move the potassium-rich surface of the bone mineral [23].

We also utilized the microprobe to study the acute
physiochemical bone mineral dissolution caused by
acidosis [15]). When we cultured calvariac with the
osteoclastic inhibitor calcitonin there was a fall in the
ratio of sodium to calcium coupled to an influx of
calcium into bone, indicating little change in bone
sodium. When calvariae were cultured in an acidic
medium with calcitonin there was calcium release with
no change in sodium to calcium, indicating that
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physicochemical bone mineral dissolution causes rela-
tively equal calcium and sodium release {15]. Respiratory
acidosis leads to some calcium release but there is no
change in surface sodium to calcium or potassium to
calcium, indicating apparent equimolar release of these
three minerals [11].

All of our previous work with the ton microprobe
involved investigation of bone cultured iz vitro. To
better understand the effects of acid on bone we
established an in-vivo model. We utilized the microp-
robe to determine the mass spectra of important ion
groups from femurs of mice acidified with oral ammo-
nium chloride compared with mice drinking only
distilled water [29°°]. We examined an area in the
midcortex (midway between the marrow space and the
superficial cortex of the longitudinally split femur),
midway down the bone shaft. We found that compared
with mice given only oral distilled water the addition of
NH4Cl to the drinking water led to a marked change in
the positive ion spectrum [29**]. In femurs from control
mice the peak for porassium and sodium was far higher
than that for calcium indicating that there is more
potassium and sodium than calcium in the midcortex of
the bone. However after oral ammonium chloride
administration, there was a fall in the ratios of potassium
and sodium relative to calcium (Fig. 12).

With respect to the negative ions we found that there
was almost as much phosphate as carbon:carbon and
carbon:nitrogen bonds in the midcortex of the control
femurs. However, oral ammonium chloride led to a fall in
the ratios of phosphate to carbon:carbon and phosphate

Figure 12, Ratio of sodium to calcium and potassium to caicium in
the mid-cortex of neonatal mice ferurs

Counts/
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Ratios of sodium to calcium (Na/Ca) and potassium to calcium (K/Ca) in
mice femurs are shown after drinking only distilled water (ctl) or water
with 16% NH,Cl (acid) for 7 days. Values are expressed as mean plus
the upper 85% confidence limit. Compared with those drinking distilled
water, there was a significant fall in the ratios of sodium to calcium and
potassium to calcium after acid treatment. *, P<0.05. Reproduced with
permission from [29°].
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to carbeninitrogen bond (Fig. 13). Additionally there was
a marked decrease i the ratio of bicarbonate to
carboricarbon and bicarbonare to carbon:nitrogen bond
with acidosis (Fig, 14).

Role of PCQ, versus bicarbonate ion
concentration

Most in-vivo and in-vitro studies have utilized hydro-
chloric acid or ammonium chloride to decrease bicarbon-
ate as a model of merabolic acidosis. This non-anion gap
acidosis mimics the clinical disorders of renal tubular

Figure 13, Ratio of total phosphate to the carbon nitrogen bond and
total phosphate to carbon in the midcortex of the neonatal mouse
femur
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Ratios are shown after drinking only distilled water (ctl) or water with
16% NH4Cl (acid) for 7 days. Values are expressed as mean plus the
upper 95% confidence limit. Compared with only distiled water
treatment, there was a significant fall in the ratios of total phosphate
(PO2+PO3) carbon nitrogen bond (CN) and total phosphate to carbon
(C») after acid treatment. *, P<0.05. Reproduced with permission from
[298%].

Figure 14. Ratio of bicarbonate to the carbon nitrogen bond and
bicarbonate to carbon in the mid-cortex of neonatal mouse femurs
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Ratios are shown after drinking only distilled water (ctl) or water with
15% NH.CI (acid) for 7 days. Values are expressed as mean plus the
upper 95% confidence limit. Compared with only distiled water
treatment, there was a significant fall in the ratios of bicarbonate
{HCO4 ™) to carbon nitrogen bond (CN) and bicarbonate to carbon (Ca)
after acid freatment, ¥, P <0.05. Reproduced with permission from
[29".

acidosis and moderate to severe diarrhea [1]. Iz vifro, the
tvpe of acidosis appears to be critical in determining the
magnitude of net calcium flux and proton buffering by
bone. We found a clear distinction between the effects
of metabolic (decreased bicarbonate) and respiratory
(increased partial pressure of carbon dioxide) acidosis on
cultured bone [4,8~12,14,16,18-20,41]. We tested the
hypothesis that a decrement in pH alone was insufficient
to induce maximal net caleium efflux from cultured
bone. In acute studies we found there was greater net
calcium efflux during culture in decreased bicarbonate
medium than during culture in isohydric acidosis
produced by an increase in the partial pressure of carbon
dioxide [9]. The decreased net calcium efflux during
respiratory acidosis compared with metabolic acidosis is
due to decreased unidirectional calcium efflux from the
mineral coupled to deposition of medium calcium on the
bone surface during hypercapnia [12]. We found
decreased bone carbonate in response to metabolic but
not respiratory acidosis [16]. These results suggest that
over this short time period acidosis affects the physico-
chemical driving forces for mineral formation and
dissolution [5,8,14,15,17]. During metabolic acidosis
the decreased bicarbonate favors dissolution while
during respiratory acidosis the increased partial pressure
of carbon dioxide and bicarbonate favors the deposition
of carbonated apatite. Indeed there is no net proton
influx into bone during respiratory acidosis [9]. Extend-
ing these studies to compensated metabolic and
respiratory acidosis we found that at a constant pH,
whether physiologically neutral or acidic, net calcium
efflux from bone is dependent on bicarbonate concen-
tration; lower medium bicarbonate concentrations cause
greater calcium efflux from bone [14].

During more chronic incubations there is cell-mediated
net calcium efflux from bone during models of metabolic
but not respiratory acidosis [10,19]. A number of studies
have shown that metabolic acidosis stimulates osteoclastic
resorption {10,12,13,102,115-117]. We found that respira-
tory acidosis does not alter osteoclastic f-glucuronidase
release, osteoblastic collagen synthesis or alkaline phos-
phatase activity as metabolic acidosis does [19]. Also,
respiratory acidosis does not appreciably alter the surface
ion composition’ of bone [6,11,15,23,24]. In contrast,
however, both isohydric metabolic or respiratory acidosis
caused a similar degree of inhibition of accumulation of
osteopontin and matrix gla protein RNA [31**].

Relationship between calcium release and
hydrogen ion buffering

During acute metabolic acidosis a reduction in pH
causes both bone calcium release and proton buffering
by bone. If all buffering was the result of mineral
dissolution there should be a one to one ratio of protons
buffered to calcium released in the case of calcium



Figure 15. Schematic of effects of metaholic acidosis on bone
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carbonate, a five to three ratio for apatite and one to one
ratio for brushite [118,119]. However, with cultured
calvariae the ratio was found to be 16-21 to one
indicating that proton buffering could not simply be
due to mineral dissolution [4]. That calcium release is
only one component of proton buffering by bone is
demonstrated by the microprobe studies, which show
substantial sodium and potassium exchange for protons
[6,11,15,23,24] and loss of bone phosphate and bicarbon-
ate with acidosis [29°*].

Conclusion

Metabolic acidosis appears to induce changes in bone
mineral which are consistent with its purported role as a
proton buffer (Fig. 15). The fall in mineral sodium,
potassium, carbonate and phosphate will each buffer
protons and lead to an increase in systemic pH toward
the physiologic normal. These changes in mineral
composition come about first through physicochemical
mineral dissolution and later through alterations in bone
cell function. The apparent protective function of bone
to maintain systemic pH will come, in part, at the
expense of its mineral stores. Future studies will be
necessary to determine if the proton buffering properties
of bone are described by a dynamic equilibrium:
protonation of phosphate and carbonate and release of
sodium and potassium during acidosis coupled to
deprotonation and uptake of sodium and potassium
during alkalosis. This attractive hypothetical mechanism
has a clear survival advantage for mammals.
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